Abscisic Acid Regulates Root Elongation Through the Activities of Auxin and Ethylene in Arabidopsis thaliana

نویسندگان

  • Julie M. Thole
  • Erin R. Beisner
  • James Liu
  • Savina V. Venkova
  • Lucia C. Strader
چکیده

Abscisic acid (ABA) regulates many aspects of plant growth and development, including inhibition of root elongation and seed germination. We performed an ABA resistance screen to identify factors required for ABA response in root elongation inhibition. We identified two classes of Arabidopsis thaliana AR mutants that displayed ABA-resistant root elongation: those that displayed resistance to ABA in both root elongation and seed germination and those that displayed resistance to ABA in root elongation but not in seed germination. We used PCR-based genotyping to identify a mutation in ABA INSENSITIVE2 (ABI2), positional information to identify mutations in AUXIN RESISTANT1 (AUX1) and ETHYLENE INSENSITIVE2 (EIN2), and whole genome sequencing to identify mutations in AUX1, AUXIN RESISTANT4 (AXR4), and ETHYLENE INSENSITIVE ROOT1/PIN-FORMED2 (EIR1/PIN2). Identification of auxin and ethylene response mutants among our isolates suggested that auxin and ethylene responsiveness were required for ABA inhibition of root elongation. To further our understanding of auxin/ethylene/ABA crosstalk, we examined ABA responsiveness of double mutants of ethylene overproducer1 (eto1) or ein2 combined with auxin-resistant mutants and found that auxin and ethylene likely operate in a linear pathway to affect ABA-responsive inhibition of root elongation, whereas these two hormones likely act independently to affect ABA-responsive inhibition of seed germination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AHK5 histidine kinase regulates root elongation through an ETR1-dependent abscisic acid and ethylene signaling pathway in Arabidopsis thaliana.

The Arabidopsis thaliana genome encodes a small family of histidine (His) protein kinases, some of which have redundant functions as ethylene receptors, whereas others serve as cytokinin receptors. The most poorly characterized of these is authentic histidine kinase 5 (AHK5; also known as cytokinin-independent 2, CKI2). Here we characterize three independent ahk5 mutants, and show that they hav...

متن کامل

The sax1 dwarf mutant of Arabidopsis thaliana shows altered sensitivity of growth responses to abscisic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroid.

Genetic approaches using Arabidopsis thaliana aimed at the identification of mutations affecting events involved in auxin signalling have usually led to the isolation of auxin-resistant mutants. From a selection screen specifically developed to isolate auxin-hypersensitive mutants, one mutant line was selected for its increased sensitivity to auxin (x 2 to 3) for the root elongation response. T...

متن کامل

Arabidopsis RING E3 Ligase XBAT32 Regulates Lateral Root Production through Its Role in Ethylene Biosynthesis

XBAT32, a member of the RING domain-containing ankyrin repeat subfamily of E3 ligases, was previously identified as a positive regulator of lateral root development. Arabidopsis (Arabidopsis thaliana) plants harboring a mutation in XBAT32 produce fewer lateral roots that wild-type plants. We found that xbat32mutants produce significantly more ethylene than wildtype plants and that inhibition of...

متن کامل

Root Responses to Boron Deficiency Mediated by Ethylene

Low boron (B) supply alters the architecture of the root system in Arabidopsis thaliana seedlings, leading to a reduction in the primary root growth and an increase in the length and number of root hairs. At short-term (hours), B deficiency causes a decrease in the cell elongation of the primary root, resulting in a lower growth. Experimental approaches using ethylene insensitive Arabidopsis mu...

متن کامل

High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis.

Physiological studies with excised stem segments have implicated the plant hormone indole-3-acetic acid (IAA or auxin) in the regulation of cell elongation. Supporting evidence from intact plants has been somewhat more difficult to obtain, however. Here, we report the identification and characterization of an auxin-mediated cell elongation growth response in Arabidopsis thaliana. When grown in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014